BookHub

Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем

Издательство: Вильямс
Тип обложки: твердая
Страниц: 688
Вес: 1.215 кг
Год издания: 2018
ISBN: 978-5-9500296-2-2, 978-1-4919-6229-9

Цены в магазинах

Вы можете найти эту книгу здесь.

График изменения цены

На графике показано, как менялась цена на книгу "Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем".
Границы области показывают минимальную и максимальную цену в указанный день.

Краткое описание книги

Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем. Полноцветное издание. "Эта книга - замечательное введение в теорию и практику решения задач с помощью нейронных сетей. Она охватывает ключевые моменты, необходимые для построения эффективных приложений, а также обеспечивает достаточную основу для понимания результатов новых исследований по мере их появления. Я рекомендую эту книгу всем, кто заинтересован в освоении практического машинного обучения". - Пит Уорден, технический руководитель направления TensorFlow Благодаря серии недавних достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на основе данных. В настоящем практическом руководстве показано, что и как следует делать. За счет применения конкретных примеров, минимума теории и двух фреймворков Python производственного уровня - Scikit-Learn и TensorFlow - автор книги Орельен Жерон поможет вам получить интуитивное представление о концепциях и инструментах, предназначенных для построения интеллектуальных систем. Вы узнаете о ряде приемов, начав с простой линейной регрессии и постепенно добравшись до глубоких нейронных сетей. Учитывая наличие в каждой главе упражнений, призванных закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования. Исследуйте область машинного обучения, особенно нейронные сети Используйте Scikit-Learn для отслеживания проекта машинного обучения от начала до конца Исследуйте некоторые обучающие модели, включая методы опорных векторов, деревья принятия решений, случайные леса и ансамблевые методы Применяйте библиотеку TensorFlow для построения и обучения нейронных сетей Исследуйте архитектуры нейронных сетей, включая сверточные сети, рекуррентные сети и глубокое обучение с подкреплением Освойте приемы для обучения и масштабирования глубоких нейронных сетей Используйте практические примеры кода, не овладевая чрезмерно теорией машинного обучения или деталями алгоритмов Об авторе Орельен Жерон - консультант по машинному обучению. Бывший работник компании Google, он руководил командой классификации видеороликов YouTube с 2013 по 2016 год. С 2002 по 2012 год он также был основателем и руководителем технического отдела в компании Wifirst, ведущего поставщика услуг беспроводного доступа к Интернету во Франции, а в 2001 году - основателем и руководителем технического отдела в фирме Polyconseil, которая сейчас управляет сервисом совместного пользования электромобилями Autolib'.

Книги с похожим названием

Часто можно найти ту же самую или очень похожую книгу среди книг со схожим названием. Это может быть и та же самая книга, но другого года издания или в дургом переплете.
Показать книги с похожим названием

Еще предложения магазинов

Посмотрите предложения магазинов, которые очень похожи на данную книгу. Это может быть та же самая книга, по каким-то причинам не указанная в списке цен выше, или другое ее издание. Так же тут будут книги с похожим названием.
Показать другие предложения магазинов